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Outline

Overview of the main C++ capabilities applied to CFD practical examples:

• Classes to protect data

• Use of function and operator overloading

• Class derivation

• Virtual functions

• Generic programming with Templates
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Why C++?

Current generation of CFD codes

• Very big size and complexity, beyond their expectations

• New functionalities grow their complexity

• 6-12 months required to new engineers to understand and develop new parts of
the code

• Due to the software complexity, most of the time is spent on testing and validation

Problems

• Global data can be corrupted anywhere in the software

• Possible interaction between new software components and the existing ones

Solution

• Software separation into manageable units

• Develop and test units in isolation

• Build complex systems from simple components

Each component consists of data and functions : a class (or object).
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Classes to protect data
Example: Vector class

Vector, widely used object in CFD modeling:

• Position marker (cell centers, face centers, mesh points)

• velocity

• . . .

Define a Vector class that can be used for all these purposes. Implementation:

• Class members

• Constructors and destructor

• Member functions:
◮ Access
◮ Operators
◮ IO
◮ . . .
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class Vector
Members and enumeration

class Vector
{

// Private data

//- Components
double V[3];

public:

// Component labeling enumeration
enum components { X, Y, Z };

The vector components are private data. In this way the vector components are
protected from corruption.

Enumeration: a type that can hold a set of values specified by the user. Once defined,
an enumeration is used like an integer type. Use v[Vector::X] or v[X] instead of
v[0] .
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class Vector
Constructors

// Constructors
//- Construct null
Vector(){}

//- Construct given three scalars
Vector(const double& Vx, const double& Vy, const double& Vz )
{

V[X] = Vx; V[Y] = Vy; V[Z] = Vz;
}

//Destructor
˜Vector(){}
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class Vector
Member functions

// Member Functions

const word& name() const;
static const dimension& dimensionOfSpace();

const double& x() const { return V[X]; }
const double& y() const { return V[Y]; }
const double& z() const { return V[Z]; }

double& x() { return V[X]; }
double& y() { return V[Y]; }
double& z() { return V[Z]; }

Member functions provide an interface for data manipulation, but the data are directly
accessible only within the class: data protection .
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class Vector
Member operators

// Member Operators

void operator=(const Vector& v);

inline void operator+=(const Vector&);
inline void operator-=(const Vector&);
inline void operator * =(const scalar);

//Friend Functions

friend Vector operator+(const Vector& v1, const Vector& v2 )
{

return Vector(v1[X]+v2[X], v1[Y]+v2[Y], v1[Z]+v2[Z]);
}

Member operators and friend functions perform operations on the class members.
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class Vector
Member operators

friend double operator&(const Vector& v1, const Vector& v2 )
{

return (v1[X] * v2[X] + v1[Y] * v2[Y] + v1[Z] * v2[Z]);
}

friend Vector operatorˆ(const Vector& v1, const Vector& v2 )
{

return Vector
(

(v1[Y] * v2[Z] - v1[Z] * v2[Y]),
(v1[Z] * v2[X] - v1[X] * v2[Z]),
(v1[X] * v2[Y] - v1[Y] * v2[X])

);
}

}; // end of the Vector class implementation

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS
class Vector
Considerations

Summary

• Class is the only responsible for his own data management.

• Class provides the interface for data manipulation.

• Data are directly accessible only within the class implementation: data
protection .

• The Vector class is a code component and can be developed and tested in
isolation.

⇒ . . . easy debug: any problem is related to the class.

Manipulating vectors:

Vector a, b, c;
Vector area = 0.5 * ((b-a)ˆ(c-a));
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class Vector
Constant and non-constant access

Pass-by-value and pass-by-reference: is the data being changed?

const double& x() const { return V[X]; }
double& x() { return V[X]; }

The user interface for the vector class provide both the constant and non-constant
access to the class members.

class cell
{

Vector centre_;
public:

const Vector& centre() const;
};

The cell center is a class member. The centre() member function provides the
constant access to the center vector and it is not possibile to modify it outside the
class.
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Operator overloading
New classes + built-in operators

Implementing the same operations on different types

• Some operators are generic, like magnitude (same name, different arguments):

label m = mag(-3);
scalar n = mag(3.0/m);

Vector r(1, 3.5, 8);
scalar magR = mag(r);

• Function/operator syntax:

Vector a, b;
Vector c = 3.4 * (a - b);

is indentical to (the compilar does the same thing):

Vector c(operator * (3.7, operator+(a, b));
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Class derivation
Particle class
Defining the class particle. Position and location.

• Position in space: vector = point
• Cell index, boundary face index, is on a boundary?

class particle
:

public Vector
{

// Private data

//- Index of the cell it is
label cellIndex_;

//- Index of the face it is
label faceIndex_;

//- is particle on boundary/outside domain
bool onBoundary_;

};

• is-a relationship: class is derived from another class.
• has-a relationship: class contains member data.
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Virtual functions
Implementing boundary condition

• Boundary conditions represent a class of related objects, all doing the same job:

◮ Hold boundary values and rules on how to update them.
◮ Specify the boundary condition effect on the matrix.

• . . . but each boundary condition does this job in it own specific way!

• Examples: fixed value (Dirichlet), zero gradient (Neumann), mixed, symmetry
plane, periodic and cyclic etc.

• However, the code operates on all boundary conditions in a consistent manner
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Virtual functions
Implementing boundary condition

• Possible implementation of boundary conditions

enum kind {fixedValue, zeroGradient, symmetryPlane, mixe d};

class boundaryCondition
{

kind k;

//other objects

public:

void updateCoeffs();
void evaluate();

};
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Virtual functions
Implementing boundary condition

• The type field k is necessary to identify what kind of boundary condition is used.
In this case the evaluate function will be something like:

boundaryCondition::evaluate()
{

switch k
{

case fixedValue: {// some code here}
case zeroGradient : {// some code here}
// implementation of other boundary conditions

}
}

• This is a mess!

◮ This function should know about all the kinds of boundary conditions
◮ Every time a new boundary condition is added, this function grow in shape
◮ This introduces bugs (touch the code...)

• Virtual functions solve this problem
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Virtual functions
Implementing boundary condition

• There is no distinction between the general properties of each boundary
condition, and the properties of a specific boundary condition.

• Expressing this distinction and taking advantage of it defines object-oriented
programming.

• The inheritance mechanism provides a solution:

◮ Class representing the general properties of a boundary condition

class fvPatchField
{
public:

virtual void evaluate() = 0;
virtual void updateCoeffs() = 0;

};

◮ In the generic boundary condition, the functions evaluate() and
updateCoeffs() are virtual. Only the calling interface is defined, but the
implementation will be done in the specific boundary condition classes.
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Virtual functions
Implementing boundary condition

• Then, specific boundary conditions are derived from the generic class:

//Dirichlet boundary condition

class fixedValueFvPatchField
:

public fvPatchField
{

double value;

public:
virtual void evaluate()
{

// some code..
}
virtual void updateCoeffs()
{

// some code..
}

};

• And they contain the implementation of the virtual functions.
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Virtual functions
Implementing boundary condition

• The rest of the code operates only with the generic conditions

List<fvPatchField * > boundaryField;
forAll (boundaryField, patchI)
{

boundaryField[patchI]->evaluate();
}

• When a virtual function is called (generic; on the base class), the actual type is
recognised and the specific (on the derived class) is called at run-time

• The ”generic boundary condition” only defines the behaviour for all derived
(concrete) classes and does not really exist

• Consequences

◮ New functionality does not disturb working code
◮ New derived class automatically hooks up to all places
◮ Shared functions can be implemented in base class
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Generic programming
Templates

• Someone who want a list is unlikely always to want a list of integers.
• A list is a general concept independent on the notion of an integer.
• If an algorithm can be expressed independently of representation details and if it

can be done so affordably without logical contorsions, it should be ought to be
done so.

• In C++ it is possible to generalize a list-of-integers type by making it a template
and replacing the specific type integer with a template parameter. For example:

template<class T>class List { // ... }

• Once the class is defined, we can use it as follows:

List<int> intList;

List<cell> cellList;

• The compiler will expand the code and perform optimisation after expansion.
• Generic programming techniques increase the power of software: less software

to do more work.
• Easy debug: if it works for one type, it will work for all.
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Generic programming
Example - List class

template<class T>
class List
{
public:

//- Construct with given size
explicit List(const label);

//- Copy constructor
List(const List<T>&);

//- Destructor
˜List();

//- Reset size of List
void setSize(const label);

//- Return subscript-checked element of List
inline T& operator[](const label);

//- Return subscript-checked element of constant LList
inline const T& operator[](const label) const;

};
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Generic programming
List class - bubble sort algorithm implementation and appli cation

template<class Type>
void Foam::bubbleSort(List<Type>& a)
{

Type tmp;
for (label i = 0; i < n - 1; i++)
{

for (label j = 0; j < n - 1 - i; j++)
{

// Compare the two neighbors
if (a[j+1] < a[j])
{

tmp = a[j]; // swap a[j] and a[j+1]
a[j] = a[j+1];
a[j+1] = tmp;

}
}

}
}

List<cell> cellList(55); // Fill in the list here
bubbleSort(cellList);
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Conclusions
C++ Object-oriented programming techniques for CFD modeli ng

• The code complexity is handled by splitting up the software into smaller and
protected units, implemented and tested in isolation.

• The class is the base unit. Consists of data and functions that operate on it.
Possibility to protect the data from outside corruption.

• Classes allow introduction of user-defined types, relevant to the problem under
consideration ⇒ vector, field, matrix, mesh.

• Virtual functions handle cases where a set of classes describe variants of related
behaviour through a common interface ⇒ boundary conditions.

• Generic programming with templates .
◮ Use for algorithms which are type-independent.
◮ Combines convenience of single code with optimisation of hand-expanded

code.
◮ Compiler does additional work: template instantiation.

• C++ is a large and complex language; OpenFOAM uses it in full.
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