
POLITECNICO DI MILANO CHALMERS

Introduction to C++ for CFD modeling

Tommaso Lucchini

Department of Energy
Politecnico di Milano

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS

Outline

Overview of the main C++ capabilities applied to CFD practical examples:

• Classes to protect data

• Use of function and operator overloading

• Class derivation

• Virtual functions

• Generic programming with Templates

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS

Why C++?

Current generation of CFD codes

• Very big size and complexity, beyond their expectations

• New functionalities grow their complexity

• 6-12 months required to new engineers to understand and develop new parts of
the code

• Due to the software complexity, most of the time is spent on testing and validation

Problems

• Global data can be corrupted anywhere in the software

• Possible interaction between new software components and the existing ones

Solution

• Software separation into manageable units

• Develop and test units in isolation

• Build complex systems from simple components

Each component consists of data and functions : a class (or object).

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS

Classes to protect data
Example: Vector class

Vector, widely used object in CFD modeling:

• Position marker (cell centers, face centers, mesh points)

• velocity

• . . .

Define a Vector class that can be used for all these purposes. Implementation:

• Class members

• Constructors and destructor

• Member functions:
◮ Access
◮ Operators
◮ IO
◮ . . .

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS
class Vector
Members and enumeration

class Vector
{

// Private data

//- Components
double V[3];

public:

// Component labeling enumeration
enum components { X, Y, Z };

The vector components are private data. In this way the vector components are
protected from corruption.

Enumeration: a type that can hold a set of values specified by the user. Once defined,
an enumeration is used like an integer type. Use v[Vector::X] or v[X] instead of
v[0] .

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS
class Vector
Constructors

// Constructors
//- Construct null
Vector(){}

//- Construct given three scalars
Vector(const double& Vx, const double& Vy, const double& Vz )
{

V[X] = Vx; V[Y] = Vy; V[Z] = Vz;
}

//Destructor
˜Vector(){}

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS
class Vector
Member functions

// Member Functions

const word& name() const;
static const dimension& dimensionOfSpace();

const double& x() const { return V[X]; }
const double& y() const { return V[Y]; }
const double& z() const { return V[Z]; }

double& x() { return V[X]; }
double& y() { return V[Y]; }
double& z() { return V[Z]; }

Member functions provide an interface for data manipulation, but the data are directly
accessible only within the class: data protection .

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS
class Vector
Member operators

// Member Operators

void operator=(const Vector& v);

inline void operator+=(const Vector&);
inline void operator-=(const Vector&);
inline void operator * =(const scalar);

//Friend Functions

friend Vector operator+(const Vector& v1, const Vector& v2 )
{

return Vector(v1[X]+v2[X], v1[Y]+v2[Y], v1[Z]+v2[Z]);
}

Member operators and friend functions perform operations on the class members.

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS
class Vector
Member operators

friend double operator&(const Vector& v1, const Vector& v2 )
{

return (v1[X] * v2[X] + v1[Y] * v2[Y] + v1[Z] * v2[Z]);
}

friend Vector operatorˆ(const Vector& v1, const Vector& v2 )
{

return Vector
(

(v1[Y] * v2[Z] - v1[Z] * v2[Y]),
(v1[Z] * v2[X] - v1[X] * v2[Z]),
(v1[X] * v2[Y] - v1[Y] * v2[X])

);
}

}; // end of the Vector class implementation

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS
class Vector
Considerations

Summary

• Class is the only responsible for his own data management.

• Class provides the interface for data manipulation.

• Data are directly accessible only within the class implementation: data
protection .

• The Vector class is a code component and can be developed and tested in
isolation.

⇒ . . . easy debug: any problem is related to the class.

Manipulating vectors:

Vector a, b, c;
Vector area = 0.5 * ((b-a)ˆ(c-a));

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS
class Vector
Constant and non-constant access

Pass-by-value and pass-by-reference: is the data being changed?

const double& x() const { return V[X]; }
double& x() { return V[X]; }

The user interface for the vector class provide both the constant and non-constant
access to the class members.

class cell
{

Vector centre_;
public:

const Vector& centre() const;
};

The cell center is a class member. The centre() member function provides the
constant access to the center vector and it is not possibile to modify it outside the
class.

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS

Operator overloading
New classes + built-in operators

Implementing the same operations on different types

• Some operators are generic, like magnitude (same name, different arguments):

label m = mag(-3);
scalar n = mag(3.0/m);

Vector r(1, 3.5, 8);
scalar magR = mag(r);

• Function/operator syntax:

Vector a, b;
Vector c = 3.4 * (a - b);

is indentical to (the compilar does the same thing):

Vector c(operator * (3.7, operator+(a, b));

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS

Class derivation
Particle class
Defining the class particle. Position and location.

• Position in space: vector = point
• Cell index, boundary face index, is on a boundary?

class particle
:

public Vector
{

// Private data

//- Index of the cell it is
label cellIndex_;

//- Index of the face it is
label faceIndex_;

//- is particle on boundary/outside domain
bool onBoundary_;

};

• is-a relationship: class is derived from another class.
• has-a relationship: class contains member data.

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS

Virtual functions
Implementing boundary condition

• Boundary conditions represent a class of related objects, all doing the same job:

◮ Hold boundary values and rules on how to update them.
◮ Specify the boundary condition effect on the matrix.

• . . . but each boundary condition does this job in it own specific way!

• Examples: fixed value (Dirichlet), zero gradient (Neumann), mixed, symmetry
plane, periodic and cyclic etc.

• However, the code operates on all boundary conditions in a consistent manner

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS

Virtual functions
Implementing boundary condition

• Possible implementation of boundary conditions

enum kind {fixedValue, zeroGradient, symmetryPlane, mixe d};

class boundaryCondition
{

kind k;

//other objects

public:

void updateCoeffs();
void evaluate();

};

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS

Virtual functions
Implementing boundary condition

• The type field k is necessary to identify what kind of boundary condition is used.
In this case the evaluate function will be something like:

boundaryCondition::evaluate()
{

switch k
{

case fixedValue: {// some code here}
case zeroGradient : {// some code here}
// implementation of other boundary conditions

}
}

• This is a mess!

◮ This function should know about all the kinds of boundary conditions
◮ Every time a new boundary condition is added, this function grow in shape
◮ This introduces bugs (touch the code...)

• Virtual functions solve this problem

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS

Virtual functions
Implementing boundary condition

• There is no distinction between the general properties of each boundary
condition, and the properties of a specific boundary condition.

• Expressing this distinction and taking advantage of it defines object-oriented
programming.

• The inheritance mechanism provides a solution:

◮ Class representing the general properties of a boundary condition

class fvPatchField
{
public:

virtual void evaluate() = 0;
virtual void updateCoeffs() = 0;

};

◮ In the generic boundary condition, the functions evaluate() and
updateCoeffs() are virtual. Only the calling interface is defined, but the
implementation will be done in the specific boundary condition classes.

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS

Virtual functions
Implementing boundary condition

• Then, specific boundary conditions are derived from the generic class:

//Dirichlet boundary condition

class fixedValueFvPatchField
:

public fvPatchField
{

double value;

public:
virtual void evaluate()
{

// some code..
}
virtual void updateCoeffs()
{

// some code..
}

};

• And they contain the implementation of the virtual functions.

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS

Virtual functions
Implementing boundary condition

• The rest of the code operates only with the generic conditions

List<fvPatchField * > boundaryField;
forAll (boundaryField, patchI)
{

boundaryField[patchI]->evaluate();
}

• When a virtual function is called (generic; on the base class), the actual type is
recognised and the specific (on the derived class) is called at run-time

• The ”generic boundary condition” only defines the behaviour for all derived
(concrete) classes and does not really exist

• Consequences

◮ New functionality does not disturb working code
◮ New derived class automatically hooks up to all places
◮ Shared functions can be implemented in base class

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS

Generic programming
Templates

• Someone who want a list is unlikely always to want a list of integers.
• A list is a general concept independent on the notion of an integer.
• If an algorithm can be expressed independently of representation details and if it

can be done so affordably without logical contorsions, it should be ought to be
done so.

• In C++ it is possible to generalize a list-of-integers type by making it a template
and replacing the specific type integer with a template parameter. For example:

template<class T>class List { // ... }

• Once the class is defined, we can use it as follows:

List<int> intList;

List<cell> cellList;

• The compiler will expand the code and perform optimisation after expansion.
• Generic programming techniques increase the power of software: less software

to do more work.
• Easy debug: if it works for one type, it will work for all.

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS

Generic programming
Example - List class

template<class T>
class List
{
public:

//- Construct with given size
explicit List(const label);

//- Copy constructor
List(const List<T>&);

//- Destructor
˜List();

//- Reset size of List
void setSize(const label);

//- Return subscript-checked element of List
inline T& operator[](const label);

//- Return subscript-checked element of constant LList
inline const T& operator[](const label) const;

};

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS

Generic programming
List class - bubble sort algorithm implementation and appli cation

template<class Type>
void Foam::bubbleSort(List<Type>& a)
{

Type tmp;
for (label i = 0; i < n - 1; i++)
{

for (label j = 0; j < n - 1 - i; j++)
{

// Compare the two neighbors
if (a[j+1] < a[j])
{

tmp = a[j]; // swap a[j] and a[j+1]
a[j] = a[j+1];
a[j+1] = tmp;

}
}

}
}

List<cell> cellList(55); // Fill in the list here
bubbleSort(cellList);

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS

Conclusions
C++ Object-oriented programming techniques for CFD modeli ng

• The code complexity is handled by splitting up the software into smaller and
protected units, implemented and tested in isolation.

• The class is the base unit. Consists of data and functions that operate on it.
Possibility to protect the data from outside corruption.

• Classes allow introduction of user-defined types, relevant to the problem under
consideration ⇒ vector, field, matrix, mesh.

• Virtual functions handle cases where a set of classes describe variants of related
behaviour through a common interface ⇒ boundary conditions.

• Generic programming with templates .
◮ Use for algorithms which are type-independent.
◮ Combines convenience of single code with optimisation of hand-expanded

code.
◮ Compiler does additional work: template instantiation.

• C++ is a large and complex language; OpenFOAM uses it in full.

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS

Bibliography

The C++ Programming Language , B. Stroustrup, Addison-Wesley, 1997

The C++ Standard Library , N. Josuttis, Addison-Wesley, 1999

The C++ Standard , John Wiley and Sons, 2003

Accelerated C++ , A. Koenig and B. Moo, Addison-Wesley, 2000

C++ by Example: UnderC Learning Edition , S. Donovan, Que, 2001

Teach Yourself C++ , A. Stevens, Wiley, 2003

Computing Concepts with C++ Essentials , C. Horstmann, Wiley, 2002

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS

Bibliography

Thinking in C++: Introduction to Standard C++, Volume One (2 nd Edition) , B.
Eckel, Prentice Hall, 2000

Thinking in C++, Volume 2: Practical Programming (Thinking in C++) , B. Eckel,
Prentice Hall, 2003

Effective C++: 55 Specific Ways to Improve Your Programs and D esigns , S.
Meyers, Addison-Wesley, 2005

More Effective C++: 35 New Ways to Improve Your Programs and D esigns , S.
Meyers, Addison-Wesley, 2005

C++ Templates: The Complete Guide , David Vandevoorde, Nicolai M. Josuttis,
Addison-Wesley, 2002

Tommaso Lucchini/ Introduction to C++ for CFD modeling



POLITECNICO DI MILANO CHALMERS

Bibliography

More bibliography can be found at:
http://www.a-train.co.uk/books.html
http://damienloison.com/Cpp/minimal.html

Tommaso Lucchini/ Introduction to C++ for CFD modeling

http://www.a-train.co.uk/books.html
http://damienloison.com/Cpp/minimal.html


POLITECNICO DI MILANO CHALMERS

Acknowledgements

Dr. Hrvoje Jasak is gratefully acknowledged for providing most of the material
displayed in this presentation

Tommaso Lucchini/ Introduction to C++ for CFD modeling


	Introduction
	Example of class implementation
	Example of class derivation
	Virtual functions
	Templates
	Conclusions

