
Five Basic Classes in OpenFOAM
Hrvoje Jasak and Henrik Rusche

h.jasak@wikki.co.uk, h.rusche@wikki-gmbh.de

Wikki, United Kingdom and Germany

Advanced Training at the OpenFOAM Workshop

21.6.2010, Gothenborg, Sweden

Five Basic Classes in OpenFOAM – p. 1



Outline

Objective

• Present in detail the implementation and functionality of five basic classes in
OpenFOAM, concentrating on Finite Volume discretisation

Topics

• Space and time: polyMesh, fvMesh, Time

• Field algebra: Field, DimensionedField and GeometricField

• Boundary conditions: fvPatchField and derived classes

• Sparse matrices: lduMatrix, fvMatrix and linear solvers

• Finite Volume discretisation: fvc and fvm namespace

Five Basic Classes in OpenFOAM – p. 2



Space and Time

Representation of Time

• Main functions of Time class
◦ Follow simulation in terms of time-steps: start and end time, delta t

◦ Time is associated with I/O functionality: what and when to write

◦ objectRegistry: all IOobjects, including mesh, fields and dictionaries
registered with time class

◦ Main simulation control dictionary: controlDict
◦ Holding paths to <root>, <case> and associated data

• Associated class: regIOobject: database holds a list of objects, with
functionality held under virtual functions

Five Basic Classes in OpenFOAM – p. 3



Space and Time

Representation of Space

• Computational mesh consists of

◦ List of points. Point index is determined from its position in the list

◦ List of faces. A face is an ordered list of points (defines face normal)

◦ List of cells OR owner-neighbour addressing (defines left and right cell for
each face, saving some storage and mesh analysis time)

◦ List of boundary patches, grouping external faces

• polyMesh class holds mesh definition objects

• primitiveMesh: some parts of mesh analysis extracted out (topo changes)

• polyBoundaryMesh is a list of polyPatches

Finite Volume Mesh

• polyMesh class provides mesh data in generic manner: it is used by multiple
applications and discretisation methods

• For convenience, each discretisation wraps up primitive mesh functionality to suit
its needs: mesh metrics, addressing etc.

• fvMesh: mesh-related support for the Finite Volume Method

Five Basic Classes in OpenFOAM – p. 4



Space and Time

Representation of Space

• Further mesh functionality is generally independent of discretisation

◦ Mesh motion (automatic mesh motion)
◦ Topological changes

◦ Problem-specific mesh templates: mixer vessels, moving boxes, pumps,
valves, internal combustion engines etc.

• Implementation is separated into derived classes and mesh modifier objects
(changing topology)

• Functionality located in the dynamicMesh library

Five Basic Classes in OpenFOAM – p. 5



Field Algebra

Field Classes: Containers with Algebra

• Class hierarchy of field containers
◦ Unallocated list: array pointer and access
◦ List: allocation + resizing

◦ Field: with algebra

◦ Dimensioned Field: I/O, dimension set, name, mesh reference
◦ Geometric field: internal field, boundary conditions, old time

List Container

• Basic contiguous storage container in OpenFOAM: List

• Memory held in a single C-style array for efficiency and optimisation

• Separate implementation for list of objects (List) and list of pointers (PtrList)
◦ Initialisation: PtrList does not require a null constructor

◦ Access: dereference pointer in operator[]() to provide object syntax
instead pointer syntax

◦ Automatic deletion of pointers in PtrList destructor

• Somewhat complicated base structure to allow slicing (memory optimisation)

Five Basic Classes in OpenFOAM – p. 6



Field Algebra

Field

• Simply, a list with algebra, templated on element type

• Assign unary and binary operators from the element, mapping functionality etc.

Dimensioned Field

• A field associated with a mesh, with a name and mesh reference

• Derived from IOobject for input-output and database registration

Geometric Field

• Consists of an internal field (derivation) and a GeometricBoundaryField

• Boundary field is a field of fields or boundary patches

• Geometric field can be defined on various mesh entities
◦ Points, edges, faces, cells

• . . . with various element types
◦ scalar, vector, tensor, symmetric tensor etc

• . . . on various mesh support classes
◦ Finite Volume, Finite Area, Finite Element

• Implementation involves a LOT of templating!

Five Basic Classes in OpenFOAM – p. 7



Boundary Conditions

Finite Volume Boundary Conditions

• Implementation of boundary conditions is a perfect example of a virtual class
hierarchy

• Consider implementation of a boundary condition

◦ Evaluate function: calculate new boundary values depending on behaviour:
fixed value, zero gradient etc.

◦ Enforce boundary type constraint based on matrix coefficients

◦ Multiple if-then-else statements throughout the code: asking for trouble

◦ Virtual function interface: run-time polymorphic dispatch

• Base class: fvPatchField
◦ Derived from a field container
◦ Reference to fvPatch: easy data access

◦ Reference to internal field

• Types of fvPatchField

◦ Basic: fixed value, zero gradient, mixed, coupled, default

◦ Constraint: enforced on all fields by the patch: cyclic, empty, processor,
symmetry, wedge, GGI

◦ Derived: wrapping basic type for physics functionality

Five Basic Classes in OpenFOAM – p. 8



Sparse Matrix and Solver

Sparse Matrix Class

• Some of the oldest parts of OpenFOAM: about to be thrown away for more
flexibility

• Class hierarchy
◦ Addressing classes: lduAddressing, lduInterface, lduMesh

◦ LDU matrix class
◦ Solver technology: preconditioner, smoother, solver

◦ Discretisation-specific matrix wrapping with handling for boundary conditions,
coupling and similar

LDU Matrix

• Square matrix with sparse addressing. Enforced strong upper triangular
ordering in matrix and mesh

• Matrix stored in 3 parts in arrow format
◦ Diagonal coefficients

◦ Off-diagonal coefficients, upper triangle

◦ Off-diagonal coefficients, lower triangle

• Out-of-core multiplication stored as a list of lduInterface with coupling
functionality: executed eg. on vector matrix multiplication

Five Basic Classes in OpenFOAM – p. 9



Sparse Matrix and Solver

LDU Matrix: Storage format

• Arbitrary sparse format. Diagonal coefficients typically stored separately

• Coefficients in 2-3 arrays: diagonal, upper and lower triangle

• Diagonal addressing implied

• Off-diagonal addressing in 2 arrays: “owner” (row index) “neighbour” (column
index) array. Size of addressing equal to the number of coefficients

• The matrix structure (fill-in) is assumed to be symmetric: presence of aij implies
the presence of aji. Symmetric matrix easily recognised: efficiency

• If the matrix coefficients are symmetric, only the upper triangle is stored – a
symmetric matrix is easily recognised and stored only half of coefficients
vectorProduct(b, x) // [b] = [A] [x]
{

for (int n = 0; n < coeffs.size(); n++)
{

int c0 = owner(n);
int c1 = neighbour(n);
b[c0] = upperCoeffs[n]*x[c1];
b[c1] = lowerCoeffs[n]*x[c0];

}

}

Five Basic Classes in OpenFOAM – p. 10



Sparse Matrix and Solver

Finite Volume Matrix Support

• Finite Volume matrix class: fvMatrix

• Derived from lduMatrix, with a reference to the solution field

• Holding dimension set and out-of-core coefficient

• Because of derivation (insufficient base class functionality), all FV matrices are
currently always scalar: segregated solver for vector and tensor variables

• Some coefficients (diagonal, next-to-boundary) may locally be a higher type, but
this is not sufficiently flexible

• Implements standard matrix and field algebra, to allow matrix assembly at
equation level: adding and subtracting matrices

• “Non-standard” matrix functionality in fvMatrix

◦ fvMatrix::A() function: return matrix diagonal in FV field form

◦ fvMatrix::H(): vector-matrix multiply with current psi(), using
off-diagonal coefficients and rhs

◦ fvMatrix::flux() function: consistent evaluation of off-diagonal product in
“face form”. See derivation of the pressure equation

• New features: coupled matrices (each mesh defines its own addressing space)
and matrices with block-coupled coefficients

Five Basic Classes in OpenFOAM – p. 11



Finite Volume Method

Finite Volume Discretisation

• Finite Volume Method implemented in 3 parts

◦ Surface interpolation: cell-to-face data transfer

◦ Finite Volume Calculus (fvc): given a field, create a new field

◦ Finite Volume Method (fvm): create a matrix representation of an operator,
using FV discretisation

• In both cases, we have static functions with no common data. Thus, fvc and
fvm are implemented as namespaces

• Discretisation involves a number of choices on how to perform identical operations:
eg. gradient operator. In all cases, the signature is common

volTensorField gradU = fvc::grad(U);

• Multiple algorithmic choices of gradient calculation operator: Gauss theorem, least
square fit, limiters etc. implemented as run-time selection

• Choice of discretisation controlled by the user on a per-operator basis:
system/fvSolution

• Thus, each operator contains basic data wrapping, selects the appropriate function
from run-time selection and calls the function using virtual function dispatch

Five Basic Classes in OpenFOAM – p. 12



Finite Volume Method

Example: Gradient Operator Dispatch

template<class Type>
tmp
<

GeometricField
<

outerProduct<vector,Type>::type, fvPatchField, volMesh
>

>
grad
(

const GeometricField<Type, fvPatchField, volMesh>& vf,
const word& name

)
{

return fv::gradScheme<Type>::New
(

vf.mesh(),
vf.mesh().gradScheme(name)

)().grad(vf);
}

Five Basic Classes in OpenFOAM – p. 13



Finite Volume Method

Example: Gradient Operator Virtual Base Class

• Virtual base class: gradScheme

template<class Type>
class gradScheme
:

public refCount
{

//- Calculate and return the grad of the given field
virtual tmp
<

GeometricField
<outerProduct<vector, Type>::type, fvPatchField, volMesh>

> grad
(

const GeometricField<Type, fvPatchField, volMesh>&
) const = 0;

};

Five Basic Classes in OpenFOAM – p. 14



Finite Volume Method

Example: Gauss Gradient Operator, Business End

forAll(owner, facei)
{

GradType Sfssf = Sf[facei]*issf[facei];
igGrad[owner[facei]] += Sfssf;
igGrad[neighbour[facei]] -= Sfssf;

}

forAll(mesh.boundary(), patchi)
{

const unallocLabelList& pFaceCells =
mesh.boundary()[patchi].faceCells();

const vectorField& pSf = mesh.Sf().boundaryField()[patchi];
const fvsPatchField<Type>& pssf = ssf.boundaryField()[patchi];

forAll(mesh.boundary()[patchi], facei)
{

igGrad[pFaceCells[facei]] += pSf[facei]*pssf[facei];
}

}

igGrad /= mesh.V();

Five Basic Classes in OpenFOAM – p. 15



Summary

Summary: Five Basic Classes in OpenFOAM (FVM Discretisation)

• Representation of space: hierarchy of mesh classes

• Representation of time: Time class with added database functions

• Basic container type: List with contiguous storage

• Boundary condition handling implemented as a virtual class hierarchy

• Sparse matrix support: arrow format, separate upper and lower triangular
coefficients

• Discretisation implemented as a calculus and method namespaces. Static
functions perform dispatch using run-time selection and virtual functions

Five Basic Classes in OpenFOAM – p. 16


	Outline
	Space and Time
	Space and Time
	Space and Time
	Field Algebra
	Field Algebra
	Boundary Conditions
	Sparse Matrix and Solver
	Sparse Matrix and Solver
	Sparse Matrix and Solver
	Finite Volume Method
	Finite Volume Method
	Finite Volume Method
	Finite Volume Method
	Summary

