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Outline

Objective

• Present in detail the implementation and functionality of five basic classes in
OpenFOAM, concentrating on Finite Volume discretisation

Topics

• Space and time: polyMesh, fvMesh, Time

• Field algebra: Field, DimensionedField and GeometricField

• Boundary conditions: fvPatchField and derived classes

• Sparse matrices: lduMatrix, fvMatrix and linear solvers

• Finite Volume discretisation: fvc and fvm namespace
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Space and Time

Representation of Time

• Main functions of Time class
◦ Follow simulation in terms of time-steps: start and end time, delta t

◦ Time is associated with I/O functionality: what and when to write

◦ objectRegistry: all IOobjects, including mesh, fields and dictionaries
registered with time class

◦ Main simulation control dictionary: controlDict
◦ Holding paths to <root>, <case> and associated data

• Associated class: regIOobject: database holds a list of objects, with
functionality held under virtual functions
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Space and Time

Representation of Space

• Computational mesh consists of

◦ List of points. Point index is determined from its position in the list

◦ List of faces. A face is an ordered list of points (defines face normal)

◦ List of cells OR owner-neighbour addressing (defines left and right cell for
each face, saving some storage and mesh analysis time)

◦ List of boundary patches, grouping external faces

• polyMesh class holds mesh definition objects

• primitiveMesh: some parts of mesh analysis extracted out (topo changes)

• polyBoundaryMesh is a list of polyPatches

Finite Volume Mesh

• polyMesh class provides mesh data in generic manner: it is used by multiple
applications and discretisation methods

• For convenience, each discretisation wraps up primitive mesh functionality to suit
its needs: mesh metrics, addressing etc.

• fvMesh: mesh-related support for the Finite Volume Method
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Space and Time

Representation of Space

• Further mesh functionality is generally independent of discretisation

◦ Mesh motion (automatic mesh motion)
◦ Topological changes

◦ Problem-specific mesh templates: mixer vessels, moving boxes, pumps,
valves, internal combustion engines etc.

• Implementation is separated into derived classes and mesh modifier objects
(changing topology)

• Functionality located in the dynamicMesh library
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Field Algebra

Field Classes: Containers with Algebra

• Class hierarchy of field containers
◦ Unallocated list: array pointer and access
◦ List: allocation + resizing

◦ Field: with algebra

◦ Dimensioned Field: I/O, dimension set, name, mesh reference
◦ Geometric field: internal field, boundary conditions, old time

List Container

• Basic contiguous storage container in OpenFOAM: List

• Memory held in a single C-style array for efficiency and optimisation

• Separate implementation for list of objects (List) and list of pointers (PtrList)
◦ Initialisation: PtrList does not require a null constructor

◦ Access: dereference pointer in operator[]() to provide object syntax
instead pointer syntax

◦ Automatic deletion of pointers in PtrList destructor

• Somewhat complicated base structure to allow slicing (memory optimisation)
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Field Algebra

Field

• Simply, a list with algebra, templated on element type

• Assign unary and binary operators from the element, mapping functionality etc.

Dimensioned Field

• A field associated with a mesh, with a name and mesh reference

• Derived from IOobject for input-output and database registration

Geometric Field

• Consists of an internal field (derivation) and a GeometricBoundaryField

• Boundary field is a field of fields or boundary patches

• Geometric field can be defined on various mesh entities
◦ Points, edges, faces, cells

• . . . with various element types
◦ scalar, vector, tensor, symmetric tensor etc

• . . . on various mesh support classes
◦ Finite Volume, Finite Area, Finite Element

• Implementation involves a LOT of templating!
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Boundary Conditions

Finite Volume Boundary Conditions

• Implementation of boundary conditions is a perfect example of a virtual class
hierarchy

• Consider implementation of a boundary condition

◦ Evaluate function: calculate new boundary values depending on behaviour:
fixed value, zero gradient etc.

◦ Enforce boundary type constraint based on matrix coefficients

◦ Multiple if-then-else statements throughout the code: asking for trouble

◦ Virtual function interface: run-time polymorphic dispatch

• Base class: fvPatchField
◦ Derived from a field container
◦ Reference to fvPatch: easy data access

◦ Reference to internal field

• Types of fvPatchField

◦ Basic: fixed value, zero gradient, mixed, coupled, default

◦ Constraint: enforced on all fields by the patch: cyclic, empty, processor,
symmetry, wedge, GGI

◦ Derived: wrapping basic type for physics functionality
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Sparse Matrix and Solver

Sparse Matrix Class

• Some of the oldest parts of OpenFOAM: about to be thrown away for more
flexibility

• Class hierarchy
◦ Addressing classes: lduAddressing, lduInterface, lduMesh

◦ LDU matrix class
◦ Solver technology: preconditioner, smoother, solver

◦ Discretisation-specific matrix wrapping with handling for boundary conditions,
coupling and similar

LDU Matrix

• Square matrix with sparse addressing. Enforced strong upper triangular
ordering in matrix and mesh

• Matrix stored in 3 parts in arrow format
◦ Diagonal coefficients

◦ Off-diagonal coefficients, upper triangle

◦ Off-diagonal coefficients, lower triangle

• Out-of-core multiplication stored as a list of lduInterface with coupling
functionality: executed eg. on vector matrix multiplication
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Sparse Matrix and Solver

LDU Matrix: Storage format

• Arbitrary sparse format. Diagonal coefficients typically stored separately

• Coefficients in 2-3 arrays: diagonal, upper and lower triangle

• Diagonal addressing implied

• Off-diagonal addressing in 2 arrays: “owner” (row index) “neighbour” (column
index) array. Size of addressing equal to the number of coefficients

• The matrix structure (fill-in) is assumed to be symmetric: presence of aij implies
the presence of aji. Symmetric matrix easily recognised: efficiency

• If the matrix coefficients are symmetric, only the upper triangle is stored – a
symmetric matrix is easily recognised and stored only half of coefficients
vectorProduct(b, x) // [b] = [A] [x]
{

for (int n = 0; n < coeffs.size(); n++)
{

int c0 = owner(n);
int c1 = neighbour(n);
b[c0] = upperCoeffs[n]*x[c1];
b[c1] = lowerCoeffs[n]*x[c0];

}

}
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Sparse Matrix and Solver

Finite Volume Matrix Support

• Finite Volume matrix class: fvMatrix

• Derived from lduMatrix, with a reference to the solution field

• Holding dimension set and out-of-core coefficient

• Because of derivation (insufficient base class functionality), all FV matrices are
currently always scalar: segregated solver for vector and tensor variables

• Some coefficients (diagonal, next-to-boundary) may locally be a higher type, but
this is not sufficiently flexible

• Implements standard matrix and field algebra, to allow matrix assembly at
equation level: adding and subtracting matrices

• “Non-standard” matrix functionality in fvMatrix

◦ fvMatrix::A() function: return matrix diagonal in FV field form

◦ fvMatrix::H(): vector-matrix multiply with current psi(), using
off-diagonal coefficients and rhs

◦ fvMatrix::flux() function: consistent evaluation of off-diagonal product in
“face form”. See derivation of the pressure equation

• New features: coupled matrices (each mesh defines its own addressing space)
and matrices with block-coupled coefficients
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Finite Volume Method

Finite Volume Discretisation

• Finite Volume Method implemented in 3 parts

◦ Surface interpolation: cell-to-face data transfer

◦ Finite Volume Calculus (fvc): given a field, create a new field

◦ Finite Volume Method (fvm): create a matrix representation of an operator,
using FV discretisation

• In both cases, we have static functions with no common data. Thus, fvc and
fvm are implemented as namespaces

• Discretisation involves a number of choices on how to perform identical operations:
eg. gradient operator. In all cases, the signature is common

volTensorField gradU = fvc::grad(U);

• Multiple algorithmic choices of gradient calculation operator: Gauss theorem, least
square fit, limiters etc. implemented as run-time selection

• Choice of discretisation controlled by the user on a per-operator basis:
system/fvSolution

• Thus, each operator contains basic data wrapping, selects the appropriate function
from run-time selection and calls the function using virtual function dispatch
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Finite Volume Method

Example: Gradient Operator Dispatch

template<class Type>
tmp
<

GeometricField
<

outerProduct<vector,Type>::type, fvPatchField, volMesh
>

>
grad
(

const GeometricField<Type, fvPatchField, volMesh>& vf,
const word& name

)
{

return fv::gradScheme<Type>::New
(

vf.mesh(),
vf.mesh().gradScheme(name)

)().grad(vf);
}
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Finite Volume Method

Example: Gradient Operator Virtual Base Class

• Virtual base class: gradScheme

template<class Type>
class gradScheme
:

public refCount
{

//- Calculate and return the grad of the given field
virtual tmp
<

GeometricField
<outerProduct<vector, Type>::type, fvPatchField, volMesh>

> grad
(

const GeometricField<Type, fvPatchField, volMesh>&
) const = 0;

};
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Finite Volume Method

Example: Gauss Gradient Operator, Business End

forAll(owner, facei)
{

GradType Sfssf = Sf[facei]*issf[facei];
igGrad[owner[facei]] += Sfssf;
igGrad[neighbour[facei]] -= Sfssf;

}

forAll(mesh.boundary(), patchi)
{

const unallocLabelList& pFaceCells =
mesh.boundary()[patchi].faceCells();

const vectorField& pSf = mesh.Sf().boundaryField()[patchi];
const fvsPatchField<Type>& pssf = ssf.boundaryField()[patchi];

forAll(mesh.boundary()[patchi], facei)
{

igGrad[pFaceCells[facei]] += pSf[facei]*pssf[facei];
}

}

igGrad /= mesh.V();
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Summary

Summary: Five Basic Classes in OpenFOAM (FVM Discretisation)

• Representation of space: hierarchy of mesh classes

• Representation of time: Time class with added database functions

• Basic container type: List with contiguous storage

• Boundary condition handling implemented as a virtual class hierarchy

• Sparse matrix support: arrow format, separate upper and lower triangular
coefficients

• Discretisation implemented as a calculus and method namespaces. Static
functions perform dispatch using run-time selection and virtual functions
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