
CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 1

A look inside icoFoam (and pisoFoam)



CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 2

A look inside icoFoam

• The icoFoam directory ($FOAM_SOLVERS/incompressible/icoFoam) consists of the following:

createFields.H Make/ icoFoam.C

• The Make directory contains instructions for the wmake compilation command.

• icoFoam.C is the main file, and createFields.H is an inclusion file, which is included in

icoFoam.C.

• In the header of icoFoam.C we include fvCFD.H, which contains all class declarations that

are needed for icoFoam. fvCFD.H is included from (see Make/options):

$WM_PROJECT_DIR/src/finiteVolume/lnInclude, but that is actually only a link to

$WM_PROJECT_DIR/src/finiteVolume/cfdTools/general/include/fvCFD.H.

fvCFD.H in turn only includes other files that are needed (see next slide).

• Hint: Use find PATH -iname "*LETTERSINFILENAME*" to find where in PATH a file

with a file name containing LETTERSINFILENAME in its file name is located.

In this case: find $WM_PROJECT_DIR -iname "*fvCFD.H*"

• Hint: Use locate fvCFD.H to find all files with fvCFD.H in their names. Note that

locate is much faster than find, but is not frequently updated when files are added and

removed!



CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 3

A look inside icoFoam, fvCFD.H

#ifndef fvCFD_H

#define fvCFD_H

#include "parRun.H"

#include "Time.H"

#include "fvMesh.H"

#include "fvc.H"

#include "fvMatrices.H"

#include "fvm.H"

#include "linear.H"

#include "uniformDimensionedFields.H"

#include "calculatedFvPatchFields.H"

#include "fixedValueFvPatchFields.H"

#include "adjustPhi.H"

#include "findRefCell.H"

#include "constants.H"

#include "OSspecific.H"

#include "argList.H"

#include "timeSelector.H"

#ifndef namespaceFoam

#define namespaceFoam

using namespace Foam;

#endif

#endif

The inclusion files are all class

declarations that are used in

icoFoam. Dig further into the

source file to find out what these

classes actually do.

At the end we say that we

will use all definitions made in

namespace Foam.



CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 4

A look inside icoFoam

• icoFoam starts with

int main(int argc, char *argv[])

where int argc, char *argv[] are the number of parameters, and the actual parame-

ters used when running icoFoam (e.g. -case cavity).

• The case is initialized by:

# include "setRootCase.H"

# include "createTime.H"

# include "createMesh.H"

# include "createFields.H"

# include "initContinuityErrs.H"

where all inclusion files except createFields.H are included from

src/OpenFOAM/lnInclude and src/finiteVolume/lnInclude. Have a look at them

yourself. (find them using the find or locate commands)

• createFields.H is located in the icoFoam directory. It initializes all the variables used

in icoFoam. Have a look inside it and see how the variables are created from files.



CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 5

A look inside icoFoam

• The time loop starts by:

while (runTime.loop())

and the rest is done at each time step.

• The fvSolution subdictionary PISO is read, and the Courant number is calculated and

written to the screen by (use the find command)

# include "readPISOControls.H"

# include "CourantNo.H"

• We will now discuss the PISO algorithm used in icoFoam, in words, equations and code

lines.



CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 6

The PISO algorithm: The incompressible flow equations (1/7)

(Acknowledgements to Professor Hrvoje Jasak)

• In strictly incompressible flow the coupling between density and pressure is removed, as

well as the coupling between the energy equation and the rest of the system.

• The incompressible continuity and momentum equations are given by:

∇ · u = 0

∂u

∂t
+∇ · (uu)−∇ · (ν∇u) = −∇p

• The non-linearity in the convection term (∇ · (uu)) is handled using an iterative solution

technique, where

∇ · (uu) ≈ ∇ · (uo
u
n)

where u
o is the currently available solution and u

n is the new solution. The algorithm cycles

until uo = u
n.

• There is no pressure equation, but the continuity equation imposes a scalar constraint on

the momentum equation (since ∇ · u is a scalar).



CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 7

The PISO algorithm: The idea behind the algorithm (2/7)
(Acknowledgements to Professor Hrvoje Jasak)

• The idea of PISO is as follows:

− Pressure-velocity systems contain two complex coupling terms:

∗ Non-linear convection term, containing u-u coupling.

∗ Linear pressure-velocity coupling.

− On low Courant numbers (small time-step), the pressure-velocity coupling is much

stronger than the non-linear coupling.

− It is therefore possible to repeat a number of pressure correctors without updating

the discretization of the momentum equation (without updating u
o).

− In such a setup, the first pressure corrector will create a conservative velocity field,

while the second and following will establish the pressure distribution.

• Since multiple pressure correctors are used with a single momentum equation, it is not

necessary to under-relax neither the pressure nor the velocity.

• On the negative side, the derivation of PISO is based on the assumption that the momentum

discretization may be safely frozen through a series of pressure correctors, which is true

only at small time-steps. Experience also shows that the PISO algorithm is more sensitive

to mesh quality than the SIMPLE algorithm.



CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 8

The PISO algorithm: Derivation of the pressure equation (3/7)
(Acknowledgements to Professor Hrvoje Jasak)

• As previously mentioned, there is no pressure equation for incompressible flow, so we use

the continuity and momentum equations to derive a pressure equation.

• Start by discretizing the momentum equation, keeping the pressure gradient in its original

form:

auPuP +
∑

N

auNuN = r−∇p

• Introduce the H(u) operator:

H(u) = r−
∑

N

auNuN

so that:

auPuP = H(u)−∇p

uP = (auP )
−1(H(u)−∇p)

• Substitute this in the incompressible continuity equation (∇ · u = 0) to get a pressure equa-

tion for incompressible flow:

∇ ·
[

(auP )
−1∇p

]

= ∇ ·
[

(auP )
−1
H(u)

]



CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 9

The PISO algorithm: Sequence of operations (4/7)

(Acknowledgements to Professor Hrvoje Jasak)

• The following description corresponds to the operations at each time step.

• Use the conservative fluxes, phi, derived from the previous time step, to discretize the

momentum equation. Now, phi represents the ’old’ velocity, uo, in the convective term.

fvVectorMatrix UEqn

(

fvm::ddt(U)

+ fvm::div(phi, U)

- fvm::laplacian(nu, U)

);

• Solve the momentum equations using the pressure from the previous time step.

solve(UEqn == -fvc::grad(p));

This is the momentum predictor step.

• We will re-use UEqn later, which is the reason not to do both these steps as a single operation

solve(fvm::ddt(U)+fvm::div(phi, U)-fvm::laplacian(nu, U)==-fvc::grad(p));



CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 10

The PISO algorithm: Sequence of operations (5/7)
(Acknowledgements to Professor Hrvoje Jasak)

• Loop the pressure-corrector step a fixed number of times (nCorr):

- Store rAU*UEqn.H() (i.e. to (auP )
−1
H(u)) in the HbyA field, representing the velocity

solution without the pressure gradient. Calculate interpolated face fluxes from the

approximate velocity field (corrected to be globally conservative so that there is a

solution to the pressure equation) to be used in the fvc::div operator.

- Loop the non-orthogonal corrector step a fixed number of times (nNonOrthCorr):

* Calculate the new pressure:

fvScalarMatrix pEqn ( fvm::laplacian(rAU, p) == fvc::div(phiHbyA) );

pEqn.setReference(pRefCell, pRefValue);

pEqn.solve();

where rAU corresponds to (auP )
−1.

* Correct finally phi for the next pressure-corrector step (see also next slide):

if (nonOrth == nNonOrthCorr){ phi = phiHbyA - pEqn.flux(); }

- Calculate and write out the continuity error.

- Correct the approximate velocity field using the corrected pressure gradient.

• Do the next pressure-corrector step.



CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 11

The PISO algorithm: Conservative face fluxes (6/7)
(Acknowledgements to Professor Hrvoje Jasak)

• Here we derive the conservative face fluxes used in pEqn.flux() in the previous slide.

• Discretize the continuity equation:

∇ · u =
∑

f

sf · u =
∑

f

F

where F is the face flux, F = sf · u.

• Substitute the expression for the velocity in ’PISO slide (3/7)’ (uP = (auP )
−1(H(u) − ∇p)),

yielding

F = −(auP )
−1
sf · ∇p + (auP )

−1
sf ·H(u)

• The first term on the R.H.S. appears during the discretization of the pressure Laplacian

(∇ ·
[

(auP )
−1∇p

]

), for each face:

(auP )
−1
sf · ∇p = (auP )

−1
|sf |

|d|
(pN − pP ) = aPN(pN − pP )

where |d| is the distance between the owner and neighbour cell centers, and aPN = (auP )
−1 |sf |

|d|

is the off-diagonal matrix coefficient in the pressure Laplacian. For the fluxes to be fully

conservative, they must be completely consistent with the assembly of the pressure equation

(i.e. non-orthogonal correction).



CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 12

The PISO algorithm: Rhie & Chow interpolation (7/7)

(Acknowledgements to Dr. Fabian Peng-Kärrholm and Professor Hrvoje Jasak)

• When using a colocated FVM formulation it is necessary to use a special interpolation to

avoid unphysical pressure oscillations.

• OpenFOAM uses an approach ’in the spirit of Rhie & Chow’, but it is not obvious how this

is done. Fabian presents a discussion on this in his PhD thesis, and here is the summary of

the important points:

− In the explicit source term fvc::div(phi) of the pressure equation, phi does not

include any effect of the pressure.

− rAU does not include any effect of pressure when solving the pressure equation and

finally correcting the velocity.

− The Laplacian term, fvm::laplacian(rAU, p), of the pressure equation uses the

value of the gradient of p on the cell faces. The gradient is calculated using neigh-

bouring cells, and not neighbouring faces.

− fvc::grad(p) is calculated from the cell face values of the pressure.



CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 13

A look inside icoFoam, write statements

• At the end of icoFoam there are some write statements:

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

• write() makes sure that all variables that were defined as an IOobject with

IOobject::AUTO_WRITE are written to the time directory accoring to the settings in the

controlDict dictionary.

• elapsedCpuTime() is the elapsed CPU time.

• elapsedClockTime() is the elapsed wall clock time.



CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 14

A look inside icoFoam, summary of the member functions

• Some of the member functions used in icoFoam are described below. The descriptions are

taken from the classes of each object that was used when calling the functions.

A(): Return the central coefficient of an fvVectorMatrix.

H(): Return the H operation source of an fvVectorMatrix.

Sf(): Return cell face area vectors of an fvMesh.

flux(): Return the face-flux field from an fvScalarMatrix

correctBoundaryConditions(): Correct boundary field of a volVectorField. Used

when the field values have been set explicitly without taking note of the boundary condi-

tions.

• Find the descriptions by identifying the object type (class) and then search the OpenFOAM

Doxygen at: http://foam.sourceforge.net/doc/Doxygen/html/ (linked to from

www.openfoam.com).

• You can also find the Doxygen documentation by doing:

firefox file://$WM_PROJECT_DIR/doc/Doxygen/html/index.html

This requires that the Doxygen documentation was compiled. If so, it would correspond to

the exact code that you have currently installed rather than the version the documenta-

tion was originally compiled for, found at www.openfoam.com. Unfortunately, the search

functionality only works when running firefox through a php server.



CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 15

What about turbulence modeling?

• icoFoam is a PISO solver for newtonian laminar flow, not including turbulence modeling.

• pisoFoam is a PISO solver for non-newtonian turbulent flow.

• Let’s have a look at the difference...

• Some Linux commands to compare files:

diff -EZBb <file1> <file2>

(check meaning of flags using man diff or diff --help)

kompare <file1> <file2>

(settings/configure Kompare, to add the equivalence of the diff flags)

meld <file1> <file2>

(Edit/preferences, to add the equivalence of the diff flags)



CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 16

Comparison of icoFoam and pisoFoam

• pisoFoam includes the declarations of classes for non-newtonian turbulent flow:

#include "singlePhaseTransportModel.H"

#include "turbulenceModel.H"

• icoFoam sets the constant kinematic viscosity from a dictionary, while

pisoFoam constructs the laminarTransport object of the class singlePhaseTransportModel.

The laminarTransport object contains the kinematic viscosity and functionality for non-

newtonian behaviour.

• pisoFoam constructs an object turbulence of the class

autoPtr<incompressible::turbulenceModel>, which reads the

constant/turbulenceProperties and RASProperties or LESProperties dictionar-

ies to choose which turbulence model to use.



CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 17

Comparison of icoFoam and pisoFoam

• icoFoam uses the constant kinematic viscosity in the momentum equation:

- fvm::laplacian(nu, U)

while

pisoFoam uses the non-constant effective viscosity from the non-newtonian model and tur-

bulence model:

+ turbulence->divDevReff(U)

• pisoFoam offers the possibility to choose if the momentum predictor should be done, and if

velocity underrelaxation should be applied.

• pisoFoam offers implicit underrelaxation on the pressure equation.

• pisoFoam solves the turbulence equations after the PISO loop:

turbulence->correct();


